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In the early theoretical study of aquatic animal propulsion eit,her the two-dimen- 
sional theory or the luge aspect-ratio theory has been generally used. Only recently 
has the unsteady lifting-surface theory with the continuous loading approach been 
applied to the study of this problem by Chopra & Kambe (1977). Since it is well known 
that the continuous loading approach is difficult t o  extend to general configurations, 
a new quasi-continuous loading method, applicable to general configurations and yet 
accurate enough for practical applications, is developed in this paper. The method is 
an extension of the steady version of Lan (1974) and is particularly suitable for pre- 
dicting the unsteady lead-edge suction during harmonic motion. 

The method is applied to the calculation of the propulsive efficiency and thrust for 
some swept and rectangular planforms by varying the phase angles between the 
pitching and heaving motions. It is found that with the pitching axis passing through 
the trailing edge of the root chord and the reduced frequency k equal to 0.75 the 
rectangular planform is quite sensitive in performance to the phase angles and may 
produce drag instead of thrust. These characteristics are not shared by the swept 
planforms simulating the lunate tails. In  addition, when the pitching leads the heaving 
motion by go", the phase angle for nearly maximum efficiency, the planform inclina- 
tion caused by pitching contributes to the propulsive thrust over a large portion of the 
swept planform, while, for the rectangular planform, only drag is produced from the 
planform normal force at k = 0.75. It is also found that the maximum thrust is not 
produced with maximum efficiency for all planforms considered. The theory is then 
applied to the study of dragonfly aerodynamics. It is shown that the aerodynamically 
interacting tandem wings of the dragonfly can produce high thrust with high efficiency 
if the pitching is in advance of the flapping and the hindwing leads the forewing with 
some optimum phase angle. The responsible mechanism allows the hindwing to 
extract wake energy from the forewing. 

1. Introduction 
In  studying aquatic animal propulsion with the carangiform mode, Lighthill (1970) 

presented an unsteady two-dimensional aerofoil theory and showed that, for high 
thrust and high efficiency, the pitching axis should be near the trailing edge in a 
coupled heaving and pitching (or side-slipping and yawing) motion. The pitching 
was assumed to lead the heaving by 90". Chopra (1974) extended Lighthill's investiga- 
tion by using the large aspect-ratio theory for finite wings. Earlier, Bennett (1970) 
had also used the large aspect-ratio theory to study ornithopter aerodynamics. In  a 
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recent paper, Chopra & Kambe (1977) used Davies’ lifting-surface method (1963) to 
investigate the hydromechanics of various planform shapes. They found that a 
curved leading edge, as on lunate tails, gives a reduced thrust contribution from the 
leading-edge suction for the same total thrust. However, moderate to high sweep 
angles suffer low propulsive efficiency a t  a given reduced frequency and feathering 
parameter, although more thrust can be produced with swept planforms. The feather- 
ing parameter, to  be defined more precisely later, may be defined as the ratio of 
normal-velocity amplitude on the planform produced by pitching to that by heaving. 
The numerical study of Chopra & Kambe was carried out only with one phase 
angle between pitching and heaving. Apparently, the advantages of the lunate tails, 
which generally have high sweep angles, warrant further investigation in the hydro- 
dynamical sense. 

It should be noted that Davies’ method is based on the kernel-function method in 
unsteady lifting-surface theory and is more difficult to  extend for general configura- 
tions. I n  addition, the prediction of the unsteady leading-edge suction in the kernel- 
function method may very much depend on the number and arrangement of the 
collocation points in the solution of the integral equation, as evidenced in the study of 
the steady lifting-surface solutions by Lan & Lamar (1977). I n  Chopra & Kambe’s 
study, the convergence of the predicted mean leading-edge suction with respect to the 
number and arrangement of the collocation points has not been demonstrated. On 
the other hand, the unsteady lifting-surface equation can also be solved by the doublet 
lattice method (DLM), which was developed by Albano & Rodden (1969) and has 
since been extended by many others. Although the DLM can be applied t o  quite 
general configurations, in its present form the unsteady leading-edge suction cannot 
be predicted accurately (see KQlmBn, Giesing & Rodden 1970). 

I n  this paper, a quasi-continuous method called the unsteady quasi-vortex-lattice 
method (unsteady QVLM) will be presented. The method is an extension of the steady 
QVLM of Lan (1974) and can be easily applied to  general configurations with good 
accuracy. The predicted mean leading-edge thrust will be shown to be quite stable with 
respect to the number and arrangement of the collocation points. The method is then 
applied to show the importance of the phase angles between pitching and heaving to 
the performance of different planform shapes, thus shedding some light on the ad- 
vantages of the lunate tails. The aerodynamic interaction between the flapping 
forewing and hindwing of the dragonfly will also be examined. 

2. Mathematical formulation 
It is assumed that the wings under consideration are situated on the x, y plane with 

the positive x axis lying along the root chord and pointing downstream, and the 
positive y axis pointing to the right, as shown in figure 1. The initial formulation will 
be based on the linear compressible flow theory, with the detail developed only for 
incompressible flow for applications to  animal propulsion. 

For a wing in heaving motion with displacement h(y, t )  and in pitching with angular 
displacement Z(y, t )  about x = x,, the total vertical displacement x(x, y, t )  is given by 

z(x ,  y, t )  = - E(y, t )  - qy, t )  (x-x,). (2.1) 

Mathematically, - Ex, in (2.1) may be replaced by a new parameter independent of x. 
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FIGURE 1. Definition of co-ordinate system. 

However. the expression given by (2.1) is retained here for numerical convenience. 
It follows that the non-dimensional normal velocity on the wing is 

- 1 a2 az 1.- - 1: 
w(x, y, t )  = --+- = --h-a--a(x-xa),  vat ax v V 

where V is the freestream velocity. Assuming the harmonic time variation such that 
w(x, y ,  t )  = Re [w(x, y) exp ( iwt )] ,  etc., (2.2) becomes 
- 

.k k 
z(’(x,y) = - 2 -  h(y) -a(y)exp  [i($ph-n)l-iia(!/)exp [i($ph-7T)I ( x - x a ) )  (2.3) 

b, br 

where k = wb,,/V is the reduced frequency and br is the reference length. The phase 
angle $ph of the pitching motion is relative to the heaving motion as illustrated in 
figure 2. Equation (2.3) can be reduced to the expressionused by Lighthill (1970) by 
setting $hph = in- and to that used by Wu (1971) by putting x, = 0. The normal velocity 
given by (2.3) can be cancelled on the wing (i.e. satisfying the wing flow tangency 
condition) by the use of oscillating doublets. According to Richardson (1955), the 
non-dimensional velocity potential for doublets in an unsteady subsonic flow with 
Mach number M below the transonic range is given by 

where S is the wing area, ACp the non-dimensional lifting pressure, ,!12 = 1 - M2,  
xo = x - 6, yo = y - 7, z,, = z - t;, (c ,? ,  5)  the co-ordinates of an elemental doublet and 

r = (7: + $, + z:)*, (2.5) 
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@ p h =  + 90' 

FIQURE 2. Illustration of phase angle of pitching relative to heaving, based on the following 
relations: Ti = h cos wt, Z = a eos (wt+ #p)ph- n). 

R2 = X: + /3'((~: + 2:). 

If the harmonic time variation is introduced, then 
- 
5qx, Y, 2 9 4  = 9(x, Y, 4 exp (iW 

and 4 b , ( 5 , 4 , t - y )  = 4C,(~,q)exp(iwt)exp[-i~(~~+x~)/V]. (2.8) 

Hence (2.4) is reduced to 

By carrying out the differentiation of the integral in (2.9) first and then integrating 
by parts, (2.9) can be simplified to 
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Equation (2.10) is a convenient form in that the familiar steady expression is imme- 
diately recovered when o = 0. 

From here on, the development of the formulation will be restricted to incompres- 
sible flow, so that M = 0 and p = 1.0. To satisfy the wing boundary condition (2.3), the 
normal velocity w = a$/az must be obtained. For this purpose, (2.10) will be approxi- 
mated through the following discretization. It is assumed that AC, is stepwise constant 
in the spanwise direction and continuous in the chordwise direction. The resulting 
chordwise integral will be reduced to finite sums through the midpoint trapezoidal 
rule according to the QVLM procedure of Lan (1974). For swept planforms, it is more 
convenient to assume AC, to be stepwise constant in the direction of constant per cent 
chord lines. Therefore, the planform will now be divided into strips in which AC, is 
taken to be constant along the straight line L joining (xl, yl) and (x2, y2), where the point 
with subscript 1 is on the left side of a given strip and 2 is on the right side; see figure 1. 
By factoring AC, out of the spanwise integral, the resulting integrand in the spanwise 
integration can be integrated by parts. For this purpose, let 

(2.12) 
and 

xo = 2-cg = 5-x1-7(x2-x1) 

Yo = Y-7 = Y-Y1-7(Y2-Y1) .  (2.13) 

The straight line L is now defined by (0, 1) in 7 .  If $1 is defined to be 

then (2.14) can be integrated to give 

where 
&v - (x2 - xl) 22 2a7 + b 

F = -tan-l + tan-l 
Z(Y~ - ~ 1 )   AT^ + B7 + C)* 2(Y2 - Y1) 2’ 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

A similar procedure can be applied to the second integral (to be denoted by $2) 

in (2.10). Let 

71 ] exp [ - iw(rl + x o ) / V ]  d7,. 

It follows that 

(2.18b) 
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Substituting (2.15) and (2.19) into (2.10), and differentiating with respect to z, the 
following is obtained: 

(2.20) 

where X denotes the summation over all spanwise strips and xl, xt are the x co- 
ordinates of the leading and trailing edges, respectively, of the chord through the 
collocation (or control) points (to be specified later). The detailed expressions for 
a$,/az and aq5z/az are given in appendix A. It should be remarked that the steady 
version of (2.20) can be shown to be the result for conventional horseshoe vortices 
derived by the Biot-Savart law. 

With the transformation 
cg = x,+*c(l-cos8) (2.21) 

(2.20) becomes 

- a4 (2, y, z )  = ACJ6) sin 6 
ax 

(2.22) 

Note that sin 6 cancels the square-root singularities of ACp at the leading and trailing 
edges. Therefore, the integral in (2.22) can be reduced to a finite sum through the 
midpoint trapezoidal rule with excellent accuracy. Any Cauchy singularity in the 
chordwise integral (see appendix B) can be accounted for by choosing a special set of 
control points to be given later. Hence 

(2.23) 

where N, is the number of integration points and 0, = (2k- 1)7r/(2Nc). Using (2.21), 
it  can be determined that the chordwise locations of the ' bounded ' element of the 
horseshoe vortices are given by 

k =  2 , f . t - C [ l - C O S ( 2 k - 1 ) 7 1 / 2 N , ] ,  k =  1 ,..., N,. (2.24) 

The x co-ordinates of endpoints of the bounded elements are given by 

X l k  = (lk, x21r = <2k, (2.25) 

where elk and <2k are with xtl, c1 and x12, c2,  respectively. According to Lan (1974), the 
control points a t  which (2.3) is to be satisfied must be chosen such that 

xi = XI + $c[ 1 - cos (in/N,)], (2.26) 

and yj = &(&b) [l -cos (j7r/(ivs+ l))], j = 1, .. ., N,, (2.27) 

where N, is the number of spanwise strips. The spanwise division of the planform into 
strips is also based on the cosine distribution: 

yk = ; ( # ) [ 1 - ~ 0 ~ ( 2 k - l ) ~ / ( A \ + l ) ] ,  k = 1 ,  ...,( N,+l). (2.28) 

Combining (2.3) and (2.20) and satisfying the boundary condition at  the control 
points, a finite number of AC, values can be computed. These ACp values are then used 
to obtain the lift and pitching moment coefficients through integration (see Lan 
1974). 

i = 1, ., ., N,, 
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The main interest here is the computation of the propulsive thrust and the pro- 
pulsive efficiency during a cycle of the oscillation. The propulsive thrust consists of 
the difference of two components, the first being represented by the mean leading- 
edge thrust coefficient CTI, and the second the lift vector component, LZ.  If the 
complex sectional lift coefficient is cl(y) a t  y, then the contribution of the latter to 
the propulsive thrust is 

- qc Re [cl(y) eiwt] Re [ a ( y )  ei(QPh-")eiWt 1 
where Re means the real part and q the dynamic pressure. The mean value over one 
cycle is therefore 

- qc3{c,,(y) Re [a (y )  ei(+Ph-") ] + ca(y)  Im [a@) ei(+ph-")l} d y ,  

where the subscripts r, i denote the real and imaginary parts, respectively. Hence, 
the mean total propulsive thrust is given by 

cTI is computed by following the procedure used in the QVLM and is formulated in 
appendix B. 

To compute the efficiency, we note that the input power.(I.P.) to  sustain the oscilla- 
tion is the negative of the.power produced by the lift, - Lz, and by the moment, A?& 
The negative sign for lLz comes from the assumption that  5 is positive downward, 
while L is positive upward. Hence 

!Zb 

- Itb 

I.P. = L i  - = q/  Re [c,(y) eiwt] Re [iwh(y) eiwt] c ( y )  d y  

b1-2 

-b /2  
- q j  Re [c,(y) eiwt] Re [iwa(y)  ei(+ph-n)eiut] c 2 ( y ) d y .  (2.30) 

The mean value over one cycle of oscillation can be shown to be 

- c,,(y) Im (a(y) ei(+ph+)] c2 (y )  d y .  (2.31) 

It follows that the propulsive efficiency is given by 

(2.32) 

3. Numerical results and discussion 
The idea used in the preceding formulation has also been applied to  two- 

dimensional cases in subsonic flow (Lan 1975); some three-dimensional results have 
been reported by Lan (1976). It was shown in the above two references that 
the calculation of the unsteady leading-edge suction by the present method is quite 
accurate in two-dimensional cases. I n  three-dimensional cases, the computed results 
for a rectangular wing with an aspect ratio ( A )  of 2-0 oscillating in its first bending 
mode have been compared with other results with good agreement. 
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FIGURE 3. Comparison of predicted chordwise pressure distribution a t  mid-semispan on a 
circular wing in pitching with axis through centre a t  M = 0 and k = 0.8 based on half chord 
at  mid-semi-span. --, analytic results by van Spiegel; 0, real part and, 0, imaginary part 
by Laschka's method; A, DLM. All of above results taken from Stahl et al. (1968). 0, present 
method. 

To illustrate further the accuracy of the present formulation, the calculated pressure 
distribution along the chord a t  mid-semispan of a circular wing in pitching oscillation 
at incompressible flow is compared with other theoretical methods in figure 3. The 
number of chordwise collocation points (N,) is taken to  be 8 and that of spanwise 
strips (3,) on the half-wing is 7 .  It is seen that the present results are in good agree- 
ment with others. 

Before the application to animal and insect propulsion can be investigated, the 
accuracy of the present method in predicting the propulsive thrust and efficiency 
must be established. Chopra & Kambe (1977) have presented some results for several 
planforms by a lifting-surface method. To avoid the effects of sweep and taper on the 
numerical accuracy, the rectangular wing of A = 8.0 included in Chopra & Kambe's 
study is chosen for compa,rison. The results for &, = 90" are presented in figure 4; 
they are for different values of the feathering parameter (8) defined as 

8 = I ~ l v / h ~ .  (3.1) 

For B = 0 ,  only heaving motion exists. Figure 4(a) shows the good convergence 
characteristics of the present method for B = 0. It is seen from figure 4 (b )  calculated 
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FIGURE 4. Rectangular wing of A = 8.0 in pitching about p chord line and in heaving; h = c 
and b, = c. (a)  Convergence study for 8 = 0 with -0- for N, = 3, -8- N, = 4 and 
-I+- N, = 5. ( 6 )  Comparison of present results (-) with Chopra & Kambe's (1 977) (- - - -). 

with N, x N, = 5 x 13 that the present results for propulsive efficiency agree quite 
well with Chopra & Kambe's. The agreement for the propulsive thrust is not as good, 
in particular a t  high reduced frequencies. The reason for the discrepancy is not known, 
since no exact solution is available for comparison. 

In  their investigation of lunate-tail swimming propulsion, Chopra & Kambe (1977) 
indicated numerically that a curved leading edge gives a reduced thrust contribution 
from the leading-edge suction for the same total thrust and the effect of leading-edge 
sweep is to reduce the propulsive efficiency. Examination of some existing fast 
swimming fish shows that the leading-edge sweeping angles of the lunate tails can 
range from 30" for the dolphin to 50' for the sailfish and up to 65" for the rainbow 
trout. Therefore, it is worthwhile to investigate further the sweep effect on the 
swimming performance of fish. For this purpose, a rectangular planform and an 
arrow wing are chosen. Both have the same aspect ratio of 7.0, which is typical for 
many fish. The arrow planform has a leading-edge sweep angle of 50". The pitching 
axis is taken to pass through the trailing edge of the root chord. The results for 
8 = 0.8 and k = 0.15 and 0.75 are plotted against the phase angle q5ph in figure 5. 
The reduced frequency is referred to half of the average chord. It is seen that both 
the rectangular and arrow planforms have comparable performance a t  the low 
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FrCURE 5 .  Comparison of propulsive performance for rectangular wing (-) and arrow wing 
(-- -) for k = 0.15 and 0.75, heaving amplitude h = 1, and 8 = 0.8. 

reduced frequency (for cruising). I n  fact, for 0 < $ph < go", the rectangular planform 
has higher 7 an? C,. A general observation of the results a t  k = 0.15 is that, for high 
propulsive efficiency, the pitching motion must lead the heaving, with $Ph N 90". 
The resulting thrust is near the minimum. On the other hand, maximum thrust 
occurs with the pitching lagging the heaving. However, as shown in figure 6 for the 
resulting normal force (i.e. the side force for most fish) with k = 0.15, the maximum 
thrust is associated with large side force which is not desirable as indicated by 
Lighthill ( 1970). The physical phenomenon involved can be explained by referring 
to figure 2, assuming that quasi-steady approximation is applicable. With 8 = 0.8, 
the normal velocity produced by heaving dominates. For $ph = go", the heaving 
normal velocity is reduced by the normal velocity due to pitching. This decreases 
the loading and hence the necessary input power. The leading-edge thrust is also 
reduced. However, the planform normal force will produce a thrust component. For 
example, as the planform is moving up, a download is produced. When it is moving 
down, an upload is produced. Both situations will result in a thrust component 
from the normal force. The situation associated with $ph = - 90" is just the opposite. 
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FIGURE 6. Comparison of the normal force coefficient on the rectangular wing (-) and arrow 
wing (---) for k = 0-15, h = 1 and 8 = 0.8. 
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FIGURE 7. Sectional thrust distribution for k = 0.75,6 = 0.8, h = 1 and &h = 90'. Rectangular 
wing: ~ , leading-edge suction only; - - - -, total. Arrow wing: - - -, leading-edge suction 
only: - - - - , total. 

The normal velocity produced by heaving and pitching is additive and thus produces 
high loading and high leading-edge thrust which is reduced by the drag component of 
the normal force. Since high leading-edge thrust may lead to flow separation, 
negative &,h is always avoided in nature. As shown by Hertel (1966), $ph 2: 72" 
for the rainbow trout and is 105" and 75" for sturgeon tail and fin, respectively. 

Examination of the results for the reduced frequency of 0.75 in figure 5 shows that, 
for &,, in the range of 120" and 195", the rectangular planform produces drag instead 
of thrust, while the arrow planform always produces thrust. The high sensitivity of the 
performance of the rectangular planform to the change in $ph may represent one of its 
disadvantages. In addition, the rectangular planform tends to produce its thrust 
completely from the leading-edge suction; while this is not true for the arrow planform. 
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FIGURE 8. Propulsive performance of a tandem-wing configuration in pure flapping with wing 
gap equal to  half chord. CT is based on one wing area and k based on half chord. 0 for k = 0.5 
and fixed hindwing. gbhl is the phase angle of hindwing motion relative to forewing. 

This is illustrated in figure 7 for $ph = 90'. For the arrow planform, the planform 
normal force contributes to the propulsive thrust over a large portion of the planform, 
except that  near the root which is normally covered by the body, or by a much thicker 
section to reduce the flow separation. Additional calculations indicate that the charac- 
teristics of the thrust generation by the arrow planform remain similar with different 
pitching axis locations and are also similar for the delta planform. At low reduced 
frequencies, the planform normal force tends to produce propulsive thrust also for the 
rectangular planform. The situation is changed a t  a value of k greater than 0.5. 

As shown above, the maximum propulsive thrust for any planform shape a t  a 
given reduced frequency is not produced with the maximum efficiency. To explore the 
possibility of high thrust produced a t  high efficiency, the dragonfly aerodynamics will 
be examined. The dragonflies were considered by Chadwick (1940) as among the 
swiftest and most skilful flyers. Their hindwings have been observed to flap always in 
advance of the forewings. To study the aerodynamics it is assumed that the motion 
is harmonic, although it is only periodic in nature. For simplicity, two rectangular 
planforms of aspect ratio 6 are placed in tandem with the gap between being a half- 
chord, and are used to  generate most of the following results. I n  reality, the gap varies 
from more than one chord length a t  the tip to  zero inboard of the mid-semispan. The 
thrust coefficient is referred to a single planform area. The pitching axes are assumed 
to be a t  the trailing edges of the planforms. The flapping amplitude is assumed to vary 
linearly from zero a t  the root to h, a t  the tip, with h, being unity. The pitching 
amplitude is assumed t o  take the form a,ijexp[i(q5ph -n-)], where ij is the spanwise 
fraction of the semispan. The feathering parameter 8 is defined by h, and a,. The results 
for pure flapping with k = 0.2 and 0.5 are shown in figure 8. They illustrate the energy 
extraction by the hindwing from the wake of the forewing. Bosch (1972) (see also 
Laschka 1975) studied this problem in two dimensions with pure heaving and showed 
that the propulsive efficiency can be greatly increased if the hindwing is fixed. The 
present three-dimensional results a t  k = 0.5 indicate that, although 11 is high if the 
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FIGURE 9. Comparison of propulsive performance of a tandem-wing configuration with wing 
gap equal to half chord. (a) k = 0.2, (b )  k = 0.75. Linear variation of flapping and pitching 
amplitudes from zero a t  root. B defined with tip amplitudes. -, 8 = 0 ;  ---, 8 = 0.8, - 
# ph - - 90'; - - - -) 8 = 0.8, &, = - 90'. 

hindwing is fixed, the resulting thrust would be low. It is advantageous to have both 
tandem wings oscillating, but with appropriate phase angle (q5hP) between the two 
to produce both high thrust and high efficiency. The appropriate is such that the 
hindwing must move in advance of the forewing. Note also that, as k is increased, the 
optimum q5hf is decreased. This energy extraction concept has also been discussed 
theoretically by Sparenberg & Wiersma (1974) and is similar to the energy extraction 
from a wavy stream as discussed by Wu (1972). 

Since in nature the motion is always in combined pitching and flapping, the results 
for k = 0.2 and 0.75 and two different 8's are shown in figure 9. It is seen that, for 
k = 0.2 with q5ph equal to 90" (i.e. pitching in advance of flapping), the efficiency is, 
in general, the best among the three and the thrust generated is the least. What is 
significant is that the maximum thrust can be generated with maximum efficiency if 
the hindwing flaps in advance of the forewing by 135" N 180". With pitching lagging 
flapping (q5ph = -go"), its apparent high thrust is generated completely from the 
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FIQURE 10. Comparison of propulsive performance of a tandem-wing configuration with differ- 
ent wing gaps. 8 = 0.8, &,h = 90" and k = 0.75. - - -, wing gap = half chord; - - - - , wing 
gap = one chord. 

leading-edge suction, with the planform normal force producing only drag. For 
$ph = 90") the planform normal force produces the thrust. The relative trend for 
k = 0.75 is quite similar to that a t  k = 0.2, except that the optimum phase angle of 
hindwing motion relative to the forewing (q5hf) has decreased. The optimum q5h, 
appears to be different for maximum 7 2: 112" with q5ph = 90") and C, ($hI 2: 67" 
with &, = 90"). The maximum efficiency for k = 0-75 is about the same as for 
k = 0.2 with $ph = 90". However, at this higher reduced frequency, 7 is considerably 
reduced for $ph = - 90" and for the pure flapping case. If the wing gap is now increased 
to one chord length, the optimum $hi is further decreased, as shown in figure 10. For 
maximum 7 and C,, the optimum 2: 67" and 22", respectively. As mentioned earlier, 
the wing gap between the dragonfly tandem wings varies across the span. Therefore, 
as an approximation, the above results may be averaged to give the optimum N 90" 
and 45" for maximum 7 and C,, respectively, a t  k = 0.75. This result seems to agree 
qualitatively with the observation of a tethered insect (Pringle 1957). Therefore, it 
may be speculated that a tethered insect may flap its wings at higher frequencies 
than in normal flight just to generate more thrust a t  high efficiency. 

The author is grateful to Dr William P. Rodden for constant encouragement during 
this research and for reading the manuscript. Thanks are also due to Jeffrey Miller 
for obtaining some of the numerical results and to Tze-Chuan Shu for plotting the 
results. This research was sponsored by the University of Kansas general research 
allocation no. 3896-5038. 
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Appendix A. Normal-velocity expressions for a unit oscillating horseshoe 
vortex 

Differentiating (2.15) with respect to z in incompressible flow gives 

where 

Similarly, differentiating (2.19) with respect to x gives 

- t a r 1  p-) z + W , + W , ) ,  (A 3) 

and 

In  (A 3), Il and I2 are defined through (2.18) such that 

and 

Differentiating I with respect to z gives 

Equation (A 8) can be used to find a21/az 87: 

It should be noted that the above expressions will be automatically reduced to 
those for the steady horseshoe vortices by setting w = 0. 
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In  (A 3)-(A 9), three are three types of integrals which must be evaluated numeri- 
cally. One possible way is to approximate the function A/ (  1 + h2)* by the following 
expression due to Jordan (1976): 

where a, and cn are constants obtained by Jordan. With (A lo), the integrals can be 
integrated exactly. These are discussed below. 

(a) Tl 3 1 = rl exp ( - iwx,/ V )  [ 1 - A/ (  1 + h2)4] exp ( - ior, h / V )  dh. (A 11) fu: 
( Lw 

Equation (A 11) can be directly evaluated after substitution of (A 10). If u1 is negative, 
it can be written as 

Tl = r,exp ( - i w x , / V )  [l - A / (  1 + h2)*] exp ( - iwr ,h /V)dh  

+fr'[i + A / (  1 + h2)4]  exp (iwr, h / V )  dh . (A 12) I 
Again, (A 10) can be used to evaluate (A 12). 

='s hexp[-iw(hr,+x,)/V dh. 

By integration by parts, (A 13) can be reduced to  
r1 u1 (1 + A,)% 

Using (A lo), T, can therefore be evaluated. If u1 is negative, it  can be shown that 

dh 
exp ( - iwx,/ V )  (2i1mjo w h exp ( - iwhr,/V) 

T, = 
rl (1 + h2)8 

h exp ( - iohrl/ V )  f lull (1+h2)% 

h exp ( - iwhr,/V) 
dh-iIm 

lull (1 +A,)% 
+ Ref 

where Im and Re stand for imaginary and real parts, respectively. 

- exp ( - iwx,/ V )  [ O3 - 
rl J ui 

dh. (A16) 
h exp ( - iwhrl/ V )  

(1  + h2)* 

Integrating by parts, (A 16) can be reduced to 
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Equation (A 17) can be directly evaluated, using (A 10). If u1 is negative, an expression 
similar t o  (A 15) can be obtained. However, another form can be derived in the follow- 
ing way : 

d h  
Q) hexp ( - iwhrl /V)  

-lull (1  + h2)+ 

dh. 

s T3 rl exp (iwzo/ V )  = 

Integrating by parts, the first term can be shown to be 

h exp ( - iwhrl/V) 
d h  = -2i-  

where KO is the modified Bessel function of zero order. It follows that, for negative ul, 

Q) h exp ( - iwhrl /V)  s lull (1+h2)# 
- i Im 

Another problem in the normal-velocity evaluation is the integration involved 
in W2 and W,. In  the present computer program, these integrals are evaluated by 
approximating the integrand by a quadratic function of 7, except for the factor 
(7 - y)/[(q - y)2 + z2] ,  or its variants, which are retained without approximation. The 
resulting expressions are then integrated exactly. 

Appendix B. Mean leading-edge thrust in oscillating motion 
According to the procedure used in the QVLM, the leading-edge thrust coefficient 

can be obtained by calculating the leading-edge singularity parameter C, defined as 

It should be noted that C, will appear from those terms in the normal-velocity ex- 
pressions which have Cauchy singularity in the chordwise integrals, that is, with the 
factor l /Q when z = 0, where 

4? = (x2-X1)(Y-Y1)-(xX:--1)(Y2-Y1). (B 2) 

From appendix A, the term with 1/Q is seen to appear in (A 2 )  and is given by 

If the remaining normal-velocity terms in (A 1) and (A 3) are denoted by Do(x, y, E ) ,  
the flow tangency condition from (2.3) and (2.20) becomes 
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Again, the co-ordinate transformation (2.21) is applied and the resulting integral 
involving Do can be reduced directly to a finite sum through the midpoint trapezoidal 
rule. However, D, has Cauchy singularity because Q will vanish for some E for control 
points within the horseshoe vortex under consideration. This integral will be treated 
as follows (see Lan 1974). 

Let w, y, E )  = D,@, Y, 5 ) Q .  

Q = +(yz - ~ 1 )  (COS 6 - cos 6') C, 

(B 5 )  

(B 6) 

From the co-ordinate transformation, it can be shown that 

where 6' is associated with 6 and 8 with x, and c is the chord length through the control 
points inside the vortex strip. It follows that 

1 =AC,(B') D(x, y, 8') sin 8' d6' 
D,@, y, 5)d5  = - 8n jo (yz - yl) (cos 8 - cos 8') 

P =  

= ln 8n 0 (y2 - yl) (cos 8 - cos 6') 

= c  

ACJS') D(x, y, 0') sin 8' - ACp(8) D(x,  y, 8) sin 8 

-- 1 N +  AcP(6k)Sin6kD(8k) -ACP(8)SinOD(6) 
(Yz - Y1) (COB 8 - CON 8,) 8Nc k= 1 

It was shown that if the control points are chosen such that 

and the integration points such that 

then 
8, = (2k- i ) n / 2 ~ , ,  k = 1, ..., N, 

Ne 

k= 1 
~ / ( c o s ~ ~ - c o s 8 ~ )  = 0. 

On the other hand, if 8 = 0 ,  i.e. at the wing leading edge, then 

NC 

k= 1 
~ / ( c o ~ 8 - c o s 8 ~ )  = NE, 8 = 0. (B 11) 

In addition, 

limACp(8)sinB = lim4u(x)x 2 [ ( x - x l ) / c ] ~ [ 1 - ( x - x z ) / c ] ~  = 4Cs (B 12) 
8-0 M S b  

and lim - B(@ = H, = 2(tanz A,+ I)*, 
e-+o YZ - YI 

where xz is the x co-ordinate of the leading-edge control point inside the strip which is 
defined by (xl, yl) and (xz, yz) at the leading edge. A, is the leading-edge sweep angle. 
It follows that (B 7) becomes 

Note that the first term in (B 14) is nothing but the upwash contributed by D, in 
(B 4). Therefore, C, can be obtained from the following: 

&NcCs H, = C (upwash at  leading edge) - w(xz, yl). (B 15) 
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The computed C, is a complex number in general. In  applications, the real part of 
C, eiWt must be taken and then time-averaged to give 

The mean sectional leading-edge thrust coefficient is then given by 

ct = nG:/(2 COSR,). 
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